Nuclear Translocation and Regulation of Intranuclear Distribution of Cytoplasmic Poly(A)-Binding Protein Are Distinct Processes Mediated by Two Epstein Barr Virus Proteins
نویسندگان
چکیده
Many viruses target cytoplasmic polyA binding protein (PABPC) to effect widespread inhibition of host gene expression, a process termed viral host-shutoff (vhs). During lytic replication of Epstein Barr Virus (EBV) we observed that PABPC was efficiently translocated from the cytoplasm to the nucleus. Translocated PABPC was diffusely distributed but was excluded from viral replication compartments. Vhs during EBV infection is regulated by the viral alkaline nuclease, BGLF5. Transfection of BGLF5 alone into BGLF5-KO cells or uninfected 293 cells promoted translocation of PAPBC that was distributed in clumps in the nucleus. ZEBRA, a viral bZIP protein, performs essential functions in the lytic program of EBV, including activation or repression of downstream viral genes. ZEBRA is also an essential replication protein that binds to viral oriLyt and interacts with other viral replication proteins. We report that ZEBRA also functions as a regulator of vhs. ZEBRA translocated PABPC to the nucleus, controlled the intranuclear distribution of PABPC, and caused global shutoff of host gene expression. Transfection of ZEBRA alone into 293 cells caused nuclear translocation of PABPC in the majority of cells in which ZEBRA was expressed. Co-transfection of ZEBRA with BGLF5 into BGLF5-KO cells or uninfected 293 cells rescued the diffuse intranuclear pattern of PABPC seen during lytic replication. ZEBRA mutants defective for DNA-binding were capable of regulating the intranuclear distribution of PABPC, and caused PABPC to co-localize with ZEBRA. One ZEBRA mutant, Z(S186E), was deficient in translocation yet was capable of altering the intranuclear distribution of PABPC. Therefore ZEBRA-mediated nuclear translocation of PABPC and regulation of intranuclear PABPC distribution are distinct events. Using a click chemistry-based assay for new protein synthesis, we show that ZEBRA and BGLF5 each function as viral host shutoff factors.
منابع مشابه
Association with the cellular export receptor CRM 1 mediates function and intracellular localization of Epstein-Barr virus SM protein, a regulator of gene expression.
Splicing and posttranscriptional processing of eukaryotic gene transcripts are linked to their nuclear export and cytoplasmic expression. Unspliced pre-mRNAs and intronless transcripts are thus inherently poorly expressed. Nevertheless, human and animal viruses encode essential genes as single open reading frames or in the intervening sequences of other genes. Many retroviruses have evolved mec...
متن کاملEpstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor through effects on Bcl-3 and STAT3.
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) activates multiple signaling pathways. Two regions, C-terminal-activating region 1 (CTAR1) and CTAR2, have been identified within the cytoplasmic carboxy terminal domain that activates NF-kappaB. CTAR2 activates the canonical NF-kappaB pathway, which includes p50/p65 complexes. CTAR1 can activate both the canonical and noncanonical pathw...
متن کاملEpstein-Barr virus BGLF4 kinase suppresses the interferon regulatory factor 3 signaling pathway.
The BGLF4 protein kinase of Epstein-Barr virus (EBV) is a member of the conserved family of herpesvirus protein kinases which, to some extent, have a function similar to that of the cellular cyclin-dependent kinase in regulating multiple cellular and viral substrates. In a yeast two-hybrid screening assay, a splicing variant of interferon (IFN) regulatory factor 3 (IRF3) was found to interact w...
متن کاملLIM protein KyoT2 negatively regulates transcription by association with the RBP-J DNA-binding protein.
The RBP-J/Su(H) DNA-binding protein plays a key role in transcriptional regulation by targeting Epstein-Barr virus nuclear antigen 2 (EBNA2) and the intracellular portions of Notch receptors to specific promoters. Using the yeast two-hybrid system, we isolated a LIM-only protein, KyoT, which physically interacts with RBP-J. Differential splicing gave rise to two transcripts of the KyoT gene, Ky...
متن کاملIL-1 receptor-associated kinase 1 is critical for latent membrane protein 1-induced p65/RelA serine 536 phosphorylation and NF-kappaB activation.
Epstein-Barr virus latent infection integral membrane protein 1 (LMP1) mimics a constitutively active TNF receptor (TNFR). LMP1 has two C-terminal cytosolic domains, transformation effector sites (TES)1 and -2, that engage TNFR-associated factors (TRAFs) and the TNFR-associated death domain protein, respectively, and activate NF-kappaB. NF-kappaB activation is critical for Epstein-Barr virus-in...
متن کامل